The dataset is made available through the following link: https://drive.google.com/file/d/1GmJWk8vFc6KC-TrrvGceaHW2HE4SZn6e/view?usp=sharing
R code used:
library(factoextra)
library(ggplot2)
library(corrplot)
diab=read.table("diab.txt",header=T)
head(diab)
dim(diab)
diab.pca=prcomp(diab,scale=T)
var=get_pca_var(diab.pca)
var
eig.val=get_eigenvalue(diab.pca)
eig.val
fviz_eig(diab.pca, addlabels = T, ylim = c(0, 30))
fviz_pca_var(diab.pca, col.var = "blue")
fviz_contrib(diab.pca,choice = "var", axes = 1)
fviz_contrib(diab.pca, choice = "var", axes = 2)
fviz_contrib(diab.pca, choice = "var", axes = 3)
fviz_contrib(diab.pca, choice = "var", axes = 4)
corrplot(var$cos2, is.corr=FALSE)
X11()
corrplot(var$contrib, is.corr=F)
diab.pca
principal component analysisPCAinterpreting PCA







![Eyezy - Style | Official Video Clip [Prod. tony fragment]](https://ytimg.googleusercontent.com/vi/0l0Y-CZAESs/mqdefault.jpg)
![[Playlist] 와 이 노래가 벌써... 세월 무엇?ㅣ신년 특집, 2022 이쯤에서 다시 듣는 20주년 기념 명곡ㅣbest songs turning 20 in 2022 ⏳](https://ytimg.googleusercontent.com/vi/ECfuKi5-Cfs/mqdefault.jpg)






